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Abstract: Following our previous works on fractional biophysical issues such as fractional dynamics of protein folding 

process and fractional dynamics of cancer cells and their branching processes, in this work we further develop these issues and 

propose a new fractional biomechanics of cancer cells. In this short note we present some promising models for future studies in 

biomedicine, including constant and variable order fractional Maxwell and Kelvin–Voigt models to study the mechanics of 

cancer cells. We also emphasize that fractional calculus will play a vital and central role in the understanding of the complexities 

that occur when we deal with the phenomena and processes in the realm of bioscience and biomedicine and particularly in 

physics of cancer. 
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1. Introduction 

The study of complex systems and the investigation of their 

structural and dynamical properties have attracted 

considerable interest among scientists in general and 

physicists and biologists in particular. Complex systems can 

be found almost everywhere, including: financial markets, 

highway transportation networks, telecommunication 

networks, social networks, computational systems however 

the highest level of complexities are related to living and 

biological organisms and systems. Complex systems are often 

composed of large numbers of interconnected and interacting 

entities whose interactions lead to emergent collective 

behaviors and in particular exhibit the emergence of 

self-organization. 

As a physicist we always are able to model natural 

phenomena using systems of differential equations and 

nowadays it is well know that the advantage of 

fractional-order differential equation systems over ordinary 

differential equation systems is that they are more 

comprehensive and also incorporate memory effect in the 

model [1-28] and due to this fact they have found many 

applications in the realm of bioscience and biomedicine to 

understand the emergence of complexities in bio-structures 

and living systems. In the field of fractional calculus we use 

new concepts of fractional integral and fractional derivative. 

The kernel function of fractional derivative is called memory 

function [29] that is very useful to describe the complex 

dynamics of complex systems. Recently it is showed that the 

fractional model perfectly fits the test data of memory 

phenomena in different disciplines [30] they have found that a 

possible physical meaning of the fractional order is an index of 

memory. From this viewpoint fractional calculus has found 

many applications in new research on physics of biological 

structures and living organisms, from DNA dynamics [31-33] 

to protein folding [34] (in this work we have presented a 

coupled system of fractional differential equations for the 

folding process of protein as follows: 
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(for details refer to the mentioned paper) as we have 

mentioned in this work, this model is the most comprehensive 

model such that all previous models can be derived from it), 

cancer cells [35], tumor-immune system [36], modeling of 

some human autoimmune diseases such as psoriasis [37], 

bioimpedance [38], spiking neurons [39], and also the 

transport of drugs across biological materials and human skin 

[40] and electrical impedance applied to human skin [41] and 

even modeling of HIV dynamics [42]. 

In our previous work we have purposed new approach of 

fractional calculus to understand the physics behind the cancer 

cells dynamics [43]. In this work we have investigated cancer 

growth process in the framework of fractional dynamics and 

we have obtained new results. In the mentioned article we 

have proposed new model based and fractional calculus for 

branching processes which are a class of simple models that 

have been used extensively to model growth dynamics of stem 

cells and cancer cells. We have also presented a new model for 

the average colony size s  as follows: 
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with general solution in terms of the well-known 

one-parameter Mittag-Leffler function in the form of: 
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(for details refer to the mentioned paper). In the present work 

we want to propose a new fractional biomechanics of cancer 

and further develop the new field of fractional dynamics of 

cancer cells.  

For these purpose in the following: concepts of fractional 

dynamics are briefly reviewed in Sec. 2. Then in Sec. 3 we 

introduce fractional viscoelastic model. Based on the 

fractional viscoelastic model, fractional biomechanics of 

cancer cells is presented in this section. At last, in Sec. 4, we 

will present some conclusions. 

2. Fractional Dynamics 

Fractional dynamics is a field in theoretical and 

mathematical physics, studying the behavior of objects and 

systems that are described by using integrations and 

differentiation of fractional orders, i.e., by methods of 

fractional calculus. Derivatives and integrals of non-integer 

orders are used to describe objects that can be characterized 

by: (1) a power-law non-locality (2) a power-law long-term 

memory (3) a fractal-type property [44]. As an example in the 

realm of classical physics we can consider the well-known 

diffusion phenomena. The most known diffusion processes is 

the normal diffusion. This process is characterized by a linear 

increase of the mean squared distance: 

2
( )r t t∝                      (5) 

where r  is the distance a particle has traveled in time t  

from its starting point. However there are many examples of 

phenomena in the natural sciences that violate this kind of 

behavior i.e. they are slower or faster than normal diffusion. 

In these cases (anomalous diffusions) the mean squared 

displacement is no longer linear in time: 
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In recent years it is well known that generalization of the 

well-known diffusion equation and wave equation such that it 

includes derivatives of non-integer order with respect to time 

can describes phenomena that satisfy such a power law mean 

squared displacement. The fractional diffusion-wave equation 

[44] is the linear fractional differential equation obtained from 

the classical diffusion or wave equations by replacing the first- 

or second-order time derivatives by a fractional derivative (in 

the Caputo sense) [45-48] of order α  with 0 2α< < , 
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This equation describes diffusion-wave phenomena [49, 50] 

which is also called the anomalous diffusion such that we 

have the super-diffusion for 1 2α< < , and sub-diffusion for 

0 1α< < . In above equations the fractional derivative of 

order α , 1n nα− < < , n N∈ is defined in the Caputo sense: 
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Where Γ denotes the Gamma function. For nα = , n N∈  

the Caputo fractional derivative is defined as the standard 

derivative of order n . It is also worth noting that we mention 

the order of fraction derivative can be constant or variable. To 

derive a solution for a process described by an equation 

containing Caputo fractional derivatives, we need the initial 

conditions that can be written as: 

( ) (0)    ,  0,1,..., ( 1)k

kf c k n= = −           (9) 

and because of this point that we are seeking the causal 

solution for natural phenomena we require that ( ) 0f t =  for 

0t < . 

3. Fractional Biomechanics of Cancer 

Fractional calculus has been considered as a powerful tool 

to model physical responses and is particularly suitable for 

building the time-dependent constitutive model. The use of 

the fractional calculus is motivated in large part by the fact 

that fewer parameters are required to achieve accurate 

approximation of experimental data [51]. It is well known 

that the ideal solid obeys the Hooke’s law, ( ) ( )t tσ ε∝ , and a 

Newtonian fluid satisfies the Newton’s law of viscosity, 
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( ) ( ) / dtt d tσ ε∝ , where σ  and ε  are the stress and strain. 

So it is not difficult to imagine that the intermediate material, 

which is intermediate between ideal solid and Newtonian 

fluid should follow [51]: 
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where E  is Young modulus and η  is an arbitrary quantity 

with dimension of [second] to ensure that all quantities have 

correct dimensions and also 0 1α≤ ≤ , where we have the 

pure elasticity for 0α = , and the pure viscosity for 1α =  

[see the Ref. 51 and references therein]. Fractional viscoelastic 

models have found many application in bioscience and 

biomedicine during the last decade [52-55]. In the next section 

we will present fractional approach to study the biomechanics 

of cancer cells. 

Like any other material, cells respond to mechanical 

perturbations by deforming, but unlike passive elastic objects, 

however, they can apply active forces to the environment. 

Active matter is attracting a large amount of attention in the 

field of soft matter, with many results having direct relevance 

to cell mechanics [56].  

Cells are extremely soft materials, with a Young modulus 

which can be measured by different means such as, for 

example, atomic force microscopy. Cells, however, are not 

simple Hookean solids since their mechanical response is 

time-dependent and include a viscous component typical of 

fluids [56]. The simplest description of viscoelasticity is in 

terms of springs and dashpots that can be combined in series, 

leading to the Maxwell model, which in its scalar version can 

be written as: 
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where ηɶ  is the viscosity, or in parallel, leading to the Kelvin–

Voigt model: 

d
E

dt

εσ ε η= + ɶ              (12) 

The Maxwell and Kelvin–Voigt models predict exponential 

relaxations of strain and stress, respectively, with a 

characteristic time /Eτ η= ɶ . Relaxation in cells is not 

exponential, as predicted by these models, but decays as a 

power law. In particular, the time-dependent response to a 

constant applied stress σ , or creep, follows [56]: 
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βε σ=                 (13) 

Similarly, the stress relaxation in response to a fixed 

deformation decays as a power law at long timescales: 

( )t t ασ −≈                         (14) 

while at short timescales one observes deviations attributed to 

the poroelastic behavior of the cell. Viscoelastic behavior is 

common to many polymeric materials, but cells are different 

because their response to stress is not only passive but 

contains an active component due to acto-myosin-driven 

contraction of the cytoskeleton [56]. This behavior can be 

described in the best way using fractional versions of Maxwell 

and Kelvin–Voigt models. Here we propose two versions of 

these models: 

I- Fractional Maxwell and Kelvin–Voigt models in term of 

constant order fractional derivative: 
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II- Fractional Maxwell and Kelvin–Voigt models in term of 

variable order fractional derivative: 

However it has been found that some mechanical 

behaviors of cells still cannot be fully understand by above 

equations. The possible reason can be that the constant 

fractional order in Eqs. (15, 16) implicates the invariability of 

mechanical property while in the real living organisms and 

systems it is changing during the mechanical process. A 

further generalization of the concept of fractional order 

calculus that is applicable to more complex mechanical 

property of material is that of a calculus of varying order 

[51]. 
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4. Conclusion 

Living organisms and systems exhibits the highest level of 

complexities. The aim of this work was only presentation of 

some promising models for the future studies in biomedicine 

based on the power tool of fractional calculus. Nowadays it 

is understood that the best tool for investigation of physics of 

such systems is fractional calculus. We believe that we will 

have exact information about biological phenomena and also 

more predictable behavior of biological structures using 

fractional calculus in future. Based on this motivation in this 

work we have proposed new versions of Maxwell and 

Kelvin–Voigt models that is constant and variable order 

fractional Maxwell and Kelvin–Voigt models, to study the 

complex behavior and mechanics of cancer cells. Finally we 

emphasize that fractional calculus will play a vital and 

central role in the understanding of the complexities that 

occur when we deal with the phenomena and processes in the 

realm of bioscience and biomedicine and particularly in 

physics of cancer and the models presented in this work will 

have a promising future. 
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